Может быть, нам удастся корректировать и расстройства нейроразвития, «ремонтируя» мозг, в котором схема подключений оказалась неправильной? Если вы коннектомный детерминист, попытки такой коррекции наверняка покажутся вам напрасной тратой времени, и вы предпочтете направить главные усилия на профилактику подобных заболеваний. Однако не совсем понятно, можно ли вообще диагностировать расстройства нейроразвития на ранней стадии и притом с надлежащей точностью. Так что выбора у нас нет – придется думать и о коррекции. Для этого потребуются самые масштабные коннектомные изменения и, следовательно, наиболее всесторонний и технически совершенный контроль четырех процессов.
До сих пор я говорил в основном о методиках лечения мозга, функционирующего неправильно, поскольку соответствующие коннектомы больше всего нуждаются в изменении. Но люди хотят получать лекарства и для улучшения функционирования нормального мозга. Многие студенты пьют кофе, сидя над учебниками. Но хотя кофеин способен помочь им не уснуть, он оказывает мало влияния на память и способность к обучению. Никотин позитивно сказывается на умственных способностях курильщиков, но лишь по сравнению с их же способностями в те периоды, когда они временно лишены сигарет. Нельзя ли найти более эффективные средства? К примеру, мы не прочь заполучить лекарство, которое способствовало бы коннектомным изменениям, благотворно влияющим на процесс обучения или запоминания. А еще нам пригодились бы лекарства, помогающие забывать. Такие средства могли бы способствовать самоуничтожению клеточных ансамблей или синаптических цепочек, возникших после травмирующих событий или же связанных с какими-то дурными привычками либо пагубными зависимостями.
* * *
Мы можем составить длинный список лекарств, которые нам бы хотелось иметь: и для профилактики мозговых недугов, и для их коррекции. К сожалению, скорость открытия таких средств невелика. Новые медикаменты появляются на рынке каждый год, нередко с большой помпой, но большинство из них на самом деле никакие не новые: это просто варианты старых, случайно открытых больше полувека назад, и вряд ли они эффективнее своих предшественников. Лишь немногие лекарства – по-настоящему новые. Лишь немногие основаны на недавних достижениях нейронауки.
Конечно, трудности возникают при разработке самых разных препаратов, не только тех, что направлены на лечение психических расстройств. Придумывание новых фармацевтических средств – весьма рискованный бизнес. На одно только создание пробной версии лекарства, которую еще предстоит испытать, может уйти много лет. Лишь те средства, которые специалисты сочтут наиболее потенциально эффективными, испытываются на людях, хотя девять из десяти лекарств-кандидатов отсеиваются на этой последней стадии проверки, оказываясь токсичными или неэффективными. Это колоссальная трата денег, ведь на клинические испытания уходит львиная доля средств, требуемых для того, чтобы вывести новое лекарство на рынок. (В среднем общие затраты для одного лекарства – от ста миллионов до миллиарда долларов.) Все отчаянно нуждаются в новых лекарствах – те, кто страдает от недугов, те, кто их лечит, а также те, кто вкладывает астрономические суммы в развитие методов лечения. Как ускорить разработку новых лекарственных средств?
В прошлом многие лекарства открывали благодаря счастливой случайности. Так, первым антипсихотиком стал хлорпромазин, в США он известен под коммерческим названием «торазин». Вещество относится к классу фенотиазинов, первые представители которого синтезировались еще в XIX веке химиками, пытавшимися создать новые красители для текстильной промышленности. В 1891 году Пауль Эрлих обнаружил, что одно из таких веществ можно использовать для лечения малярии. Во время Второй мировой войны французская фармацевтическая компания Rhône-Poulenc (прародительница нынешней Sanofi-Aventis) протестировала многие фенотиазины в поисках новых противомалярийных препаратов; однако не удалось найти ни одного эффективного средства, и химики переключились на антигистаминные препараты. (Их часто принимают при аллергии.) А потом один терапевт обнаружил, что фенотиазины способны усиливать действие анестетиков, применяемых при хирургических операциях. Исследователи из Rhône-Poulenc начали проверять эти вещества на их пригодность к этой новой сфере применения и вскоре поняли, что хлорпромазин будет здесь эффективен. Прописывая это средство своим пациентам в качестве успокаивающего, психиатры обнаружили, что особенно хорошо оно ослабляет симптомы различных психозов. К концу 1950-х хлорпромазин уже применялся во множестве психиатрических лечебниц по всему миру.
Первые антидепрессанты, ипрониазид и имипрамин, удалось открыть примерно в то же время, и эти истории тоже непросты и запутанны. Так, ипрониазид создали для лечения туберкулеза, но обнаружился неожиданный побочный эффект: препарат делал пациента беспричинно довольным. Психиатры в конце концов осознали, что этот эффект препарата можно использовать для лечения страдающих депрессией. Между тем швейцарская компания J. R. Geigy (предшественница компании Novartis), прослышав об успехах фирмы Rhône-Poulenc с хлорпромазином, решила не отставать от конкурентов и, сыграв на опережение, поискать собственное антипсихотическое средство. Они попробовали испытать имипрамин, который химики синтезировали путем модификации фенотиазина. Полученное вещество не помогало при психозах, но, к счастью, оказалось, что оно ослабляет депрессию.
Так что на самом деле ученые не пытались специально разработать эти первые антипсихотические препараты и антидепрессанты. Им просто хватило везения и внимательности; по сути, они случайно натолкнулись на них в 1950-е годы – в этот золотой век фармацевтики. В более поздние времена всё больший энтузиазм вызывали «рациональные» методы поиска новых лекарств, основанные на нашем нынешнем понимании биологии и нейронауки. Как же работают такие методы?
Вспомним: клетки состоят из весьма разнообразных биологических молекул, вовлеченных во множество разновидностей жизненных процессов. (Выше я уже упоминал один из важных классов таких молекул – белки: их синтез происходит на основе «плана», заложенного в генах.) Лекарство – искусственно синтезированная молекула, взаимодействующая с «естественными» молекулами клетки. В идеальной ситуации, согласно принципу волшебной пули, лекарство должно взаимодействовать лишь с определенным типом биомолекул, но не с молекулами остальных типов.
Следовательно, процесс рационального поиска новых медикаментов должен начинаться с выяснения того, какие биомолекулы ответственны за дисфункции, возникающие при болезни. Ученые уже начали выявлять многие из таких биомолекул, которые могут служить мишенями для тех или иных схем лечения. Темпы обнаружения таких мишеней увеличились с появлением геномики, вселяя всё больший оптимизм в сердца тех, кто надеется отыскать новые лекарства рациональными методами.
Как только мишень для будущего лекарства выявлена, следует найти искусственные молекулы, которые могут с ней связываться по принципу «ключ – замок». Ученые синтезируют широкий спектр веществ-кандидатов, основываясь на догадках, подкрепленных фактами и закономерностями. Затем эти вещества проверяются эмпирическим путем. Если какое-то из веществ действительно поражает мишень, структуру синтезируемого вещества совершенствуют, постепенно усиливая его связывание с мишенью. Первую стадию разработки нового лекарства осуществляют химики.
Ненадолго перепрыгнем вперед, к последней стадии – проверке лекарства на людях. За эту стадию отвечают врачи, они дают исследуемые вещества больным, чтобы проверить, будут ли ослабляться симптомы. Ни экономические, ни этические соображения не позволяют сразу тестировать новое лекарство на человеке, если предварительно нет веских оснований полагать, что оно, скорее всего, безопасно и эффективно. Но даже при соблюдении этих условий девять из десяти веществ-кандидатов отсеиваются именно на этой стадии (как я уже отмечал ранее), а для заболеваний центральной нервной системы доля отвергаемых препаратов еще выше. Эта удручающая статистика позволяет предположить, что между первой и последней стадиями разработки новых лекарств происходит что-то не то. Как еще до проверки на человеке с большей уверенностью предсказать, что вещество-кандидат не только эффективно связывается со своей мишенью в пробирке, но и будет эффективно при лечении данного заболевания? Если удастся находить больше экспериментальных свидетельств такой эффективности или же находить более надежные свидетельства, новые препараты будут разрабатываться быстрее и дешевле.